日本免费精品视频,男人的天堂在线免费视频,成人久久久精品乱码一区二区三区,高清成人爽a毛片免费网站

在線客服
數字圖像處理(MATLAB版)(第二版)圖書
人氣:37

數字圖像處理(MATLAB版)(第二版)

Preface This edition of Digital Image Processing Using MATLAB is a major revision of the book. As in the previous edition, the focus of the book is based on the fact that solutions to problems in t...

內容簡介

這是圖像處理基礎理論論述同以MATLAB為主要工具的軟件實踐方法相對照的及時本書。本書集成了岡薩雷斯和伍茲所著的《數字圖像處理(第三版)》一書中重要的原文材料和MathWorks公司的圖像處理工具箱。本書的特色在于重點強調怎樣通過開發新代碼來加強這些軟件工具。本書在介紹MATLAB編程基礎知識之后,講述了圖像處理的主干內容,包括灰度變換、線性和非線性空間濾波、頻率域濾波、圖像復原與重建、幾何變換和圖像配準、彩色圖像處理、小波、圖像壓縮、形態學圖像處理、圖像分割、區域和邊界表示與描述。

編輯推薦

本書是圖像處理基礎理論論述同以MATLAB為工具的軟件實踐方法相結合的本書,集成了岡薩雷斯和伍茲所著的《數字圖像處理(第三版)》一書中的重要內容和MathWorks公司的圖像處理工具箱。該版本包括重點術語的中文注釋。

本書的主要特色:

(1) 自成體系,以工具書的風格書寫

(2) 開發了100多個圖像處理函數,同時討論數字圖像處理主流算法和MATLAB函數

(3) 涵蓋雷登變換、幾何變換、圖像配準、獨立與設備的彩色變換、針對視頻的壓縮函數;自適應閾值算法等

(4) 部分代碼為MATLAB與C結合使用

(5) 書中包含GUI詳細設計

原書作者Rafael C. Gonzalez是數字圖像處理領域的人物,他在模式識別、圖像處理和機器人領域編寫或與人合著了100多篇技術文章、兩本書和4本教材。岡薩雷斯博士的著作已被世界1000多所大學和研究所采用,深受讀者喜愛。

作者簡介

Rafael C. Gonzalez于福羅里達大學電子工程系獲得博士學位,田納西大學電氣和計算機工程系教授,田納西大學圖像和模式分析實驗室、機器人和計算機視覺實驗室的創始人及IEEE會士。岡薩雷斯博士在模式識別、圖像處理和機器人領域編寫或魚人合著了100多篇技術文章兩本書和4本教材,他的書已被世界1000多所大學和研究所采用。

目錄

Contents

Preface

Acknowledgements

About the Authors

1 Introduction

Preview

1.1 Background

1.2 What Is Digital Image Processing?

1.3 Background on MATLAB and the Image Processing Toolbox

1.4 Areas of Image Processing Covered in the Book

1.5 The Book Web Site

1.6 Notation

1.7 Fundamentals

1.7.1 The MATLAB Desktop

1.7.2 Using the MATLAB Editor/Debugger

1.7.3 Getting Help

1.7.4 Saving and Retrieving Work Session Data

1.7.5 Digital Image Representation

1.7.6 Image I/O and Display

1.7.7 Classes and Image Types

1.7.8 M-Function Programming

1.8 How References Are Organized in the Book

Summary

2 Intensity Transformations and Spatial Filtering

Preview

2.1 Background

2.2 Intensity Transformation Functions

2.2.1 Functions imadjust and stretchlim

2.2.2 Logarithmic and Contrast- Stretching Transformations

2.2.3 Specifying Arbitrary Intensity Transformations

2.2.4 Some Utility M-functions for Intensity Transformations

2.3 Histogram Processing and Function Plotting

2.3.1 Generating and Plotting Image Histograms

2.3.2 Histogram Equalization

2.3.3 Histogram Matching (Specification)

2.3.4 Function adapthisteq

2.4 Spatial Filtering

2.4.1 Linear Spatial Filtering

2.4.2 Nonlinear Spatial Filtering

2.5 Image Processing Toolbox Standard Spatial Filters

2.5.1 Linear Spatial Filters

2.5.2 Nonlinear Spatial Filters

2.6 Using Fuzzy Techniques for Intensity Transformations and Spatial

Filtering

2.6.1 Background

2.6.2 Introduction to Fuzzy Sets

2.6.3 Using Fuzzy Sets

2.6.4 A Set of Custom Fuzzy M-functions

2.6.5 Using Fuzzy Sets for Intensity Transformations

2.6.6 Using Fuzzy Sets for Spatial Filtering

Summary

3 Filtering in the Frequency Domain

Preview

3.1 The 2-D Discrete Fourier Transform

3.2 Computing and Visualizing the 2-D DFT in MATLAB

3.3 Filtering in the Frequency Domain

3.3.1 Fundamentals

3.3.2 Basic Steps in DFT Filtering

3.3.3 An M-function for Filtering in the Frequency Domain

3.4 Obtaining Frequency Domain Filters from Spatial Filters

3.5 Generating Filters Directly in the Frequency Domain

3.5.1 Creating Meshgrid Arrays for Use in Implementing Filters

in the Frequency Domain

3.5.2 Lowpass (Smoothing) Frequency Domain Filters

3.5.3 Wireframe and Surface Plotting

3.6 Highpass (Sharpening) Frequency Domain Filters

3.6.1 A Function for Highpass Filtering

3.6.2 High-Frequency Emphasis Filtering

3.7 Selective Filtering

3.7.1 Bandreject and Bandpass Filters

3.7.2 Notchreject and Notchpass Filters

Summary

4 Image Restoration and Reconstruction

Preview

4.1 A Model of the Image Degradation/Restoration Process

4.2 Noise Models

4.2.1 Adding Noise to Images with Function imnoise

4.2.2 Generating Spatial Random Noise with a Specified

Distribution

4.2.3 Periodic Noise

4.2.4 Estimating Noise Parameters

4.3 Restoration in the Presence of Noise Only—Spatial Filtering

4.3.1 Spatial Noise Filters

4.3.2 Adaptive Spatial Filters

4.4 Periodic Noise Reduction Using Frequency Domain Filtering

4.5 Modeling the Degradation Function

4.6 Direct Inverse Filtering

4.7 Wiener Filtering

4.8 Constrained Least Squares (Regularized) Filtering

4.9 Iterative Nonlinear Restoration Using the Lucy-Richardson

Algorithm

4.10 Blind Deconvolution

4.11 Image Reconstruction from Projections

4.11.1 Background

4.11.2 Parallel-Beam Projections and the Radon Transform

4.11.3 The Fourier Slice Theorem and Filtered Backprojections

4.11.4 Filter Implementation

4.11.5 Reconstruction Using Fan-Beam Filtered Backprojections

4.11.6 Function radon

4.11.7 Function iradon

4.11.8 Working with Fan-Beam Data

Summary

5 Geometric Transformations and Image

Registration

Preview

5.1 Transforming Points

5.2 Affine Transformations

5.3 Projective Transformations

5.4 Applying Geometric Transformations to Images

5.5 Image Coordinate Systems in MATLAB

5.5.1 Output Image Location

5.5.2 Controlling the Output Grid

5.6 Image Interpolation

5.6.1 Interpolation in Two Dimensions

5.6.2 Comparing Interpolation Methods

5.7 Image Registration

5.7.1 Registration Process

5.7.2 Manual Feature Selection and Matching Using cpselect

5.7.3 Inferring Transformation Parameters Using cp2tform

5.7.4 Visualizing Aligned Images

5.7.5 Area-Based Registration

5.7.6 Automatic Feature-Based Registration

Summary

6 Color Image Processing

Preview

6.1 Color Image Representation in MATLAB

6.1.1 RGB Images

6.1.2 Indexed Images

6.1.3 Functions for Manipulating RGB and Indexed Images

6.2 Converting Between Color Spaces

6.2.1 NTSC Color Space

6.2.2 The YCbCr Color Space

6.2.3 The HSV Color Space

6.2.4 The CMY and CMYK Color Spaces

6.2.5 The HSI Color Space

6.2.6 Device-Independent Color Spaces

6.3 The Basics of Color Image Processing

6.4 Color Transformations

6.5 Spatial Filtering of Color Images

6.5.1 Color Image Smoothing

6.5.2 Color Image Sharpening

6.6 Working Directly in RGB Vector Space

6.6.1 Color Edge Detection Using the Gradient

6.6.2 Image Segmentation in RGB Vector Space

Summary

7 Wavelets

Preview

7.1 Background

7.2 The Fast Wavelet Transform

7.2.1 FWTs Using the Wavelet Toolbox

7.2.2 FWTs without the Wavelet Toolbox

7.3 Working with Wavelet Decomposition Structures

7.3.1 Editing Wavelet Decomposition Coefficients without the

Wavelet Toolbox

7.3.2 Displaying Wavelet Decomposition Coefficients

7.4 The Inverse Fast Wavelet Transform

7.5 Wavelets in Image Processing

Summary

8 Image Compression

Preview

8.1 Background

8.2 Coding Redundancy

8.2.1 Huffman Codes

8.2.2 Huffman Encoding

8.2.3 Huffman Decoding

8.3 Spatial Redundancy

8.4 Irrelevant Information

8.5 JPEG Compression

8.5.1 JPEG

8.5.2 JPEG 2000

8.6 Video Compression

8.6.1 MATLAB Image Sequences and Movies

8.6.2 Temporal Redundancy and Motion Compensation

Summary

9 Morphological Image Processing

Preview

9.1 Preliminaries

9.1.1 Some Basic Concepts from Set Theory

9.1.2 Binary Images, Sets, and Logical Operators

9.2 Dilation and Erosion

9.2.1 Dilation

9.2.2 Structuring Element Decomposition

9.2.3 The strel Function

9.2.4 Erosion

9.3 Combining Dilation and Erosion

9.3.1 Opening and Closing

9.3.2 The Hit-or-Miss Transformation

9.3.3 Using Lookup Tables

9.3.4 Function bwmorph

9.4 Labeling Connected Components

9.5 Morphological Reconstruction

9.5.1 Opening by Reconstruction

9.5.2 Filling Holes

9.5.3 Clearing Border Objects

9.6 Gray-Scale Morphology

9.6.1 Dilation and Erosion

9.6.2 Opening and Closing

9.6.3 Reconstruction

Summary

10 Image Segmentation

Preview

10.1 Point, Line, and Edge Detection

10.1.1 Point Detection

10.1.2 Line Detection

10.1.3 Edge Detection Using Function edge

10.2 Line Detection Using the Hough Transform

10.2.1 Background

10.2.2 Toolbox Hough Functions

10.3 Thresholding

10.3.1 Foundation

10.3.2 Basic Global Thresholding

10.3.3 Optimum Global Thresholding Using Otsu's Method

10.3.4 Using Image Smoothing to Improve Global Thresholding

10.3.5 Using Edges to Improve Global Thresholding

10.3.6 Variable Thresholding Based on Local Statistics

10.3.7 Image Thresholding Using Moving Averages

10.4 Region-Based Segmentation

10.4.1 Basic Formulation

10.4.2 Region Growing

10.4.3 Region Splitting and Merging

10.5 Segmentation Using the Watershed Transform

10.5.1 Watershed Segmentation Using the Distance Transform

10.5.2 Watershed Segmentation Using Gradients

10.5.3 Marker-Controlled Watershed Segmentation

Summary

11 Representation and Description

Preview

11.1 Background

11.1.1 Functions for Extracting Regions and Their Boundaries

11.1.2 Some Additional MATLAB and Toolbox Functions Used

in This Chapter

11.1.3 Some Basic Utility M-Functions

11.2 Representation

11.2.1 Chain Codes

11.2.2 Polygonal Approximations Using Minimum-Perimeter Polygons

11.2.3 Signatures

11.2.4 Boundary Segments

11.2.5 Skeletons

11.3 Boundary Descriptors

11.3.1 Some Simple Descriptors

11.3.2 Shape Numbers

11.3.3 Fourier Descriptors

11.3.4 Statistical Moments

11.3.5 Corners

11.4 Regional Descriptors

11.4.1 Function regionprops

11.4.2 Texture

11.4.3 Moment Invariants

11.5 Using Principal Components for Description

Summary

Appendix A M-Function Summary

Appendix B ICE and MATLAB Graphical User Interfaces

Appendix C Additional Custom M-functions

Bibliography

Index

網友評論(不代表本站觀點)

免責聲明

更多出版社