納米科學與技術大全5:自組裝與納米化學(導讀版)作者將生態學不同領域的理論和實驗進展與新方法相結合,在個體層次與群落結構、生態系統功能間,微觀世界與宏觀生態間的融合做了很好的嘗試,為我們理解生態現象、生態過程以及生態功能展示了一個很好的途徑。
納米科學與技術大全5:自組裝與納米化學(導讀版)可作為研究生生態課程的參考書,對于從事生態學教學和研究的教師和科研人員及生態學者有非常高的參考價值。
Gregory D.Scholes、Frank Caruso
5.01 多孔金屬有機骨架
5.01.1 Introduction
5.01.2 Inorganic SBUs and Organic Linkers
5.01.3 Architecture of the Networks
5.01.4 Porous Structures
5.01.4.1 0D Cage
5.01.4.2 1D Channels
5.01.4.3 2D Layers
5.01.4.4 3D Channels
5.01.5 Synthesis of MOFs
5.01.5.1 Influencing Factors
5.01.5.2 Solvent-Evaporation Synthesis
5.01.5.3 Diffusion Synthesis
5.01.5.4 Hydrothermal (or Solvothermal) Synthesis
5.01.5.5 Microwave-Reaction Synthesis
5.01.5.6 Ionothermal Synthesis
5.01.5.7 Electrochemical Synthesis
5.01.5.8 High-Throughput Synthesis
5.01.6 Functions of MOFs
5.01.6.1 Gas Storage
5.01.6.1.1 Hydrogen Storage
5.01.6.1.2 Methane Storage
5.01.6.1.3 Carbon Dioxide Storage
5.01.6.2 Selective Gas Adsorptions and Separations
5.01.6.3 Catalysis
5.01.6.4 Magnetism
5.01.6.5 Optics
5.01.6.6 Sensor
5.01.6.7 Drug Delivery
5.01.7 Summary and Outlook
References
5.02 納米粒子配體
5.02.1 Introduction
5.02.2 Ligands, Chief Cook, and Bottle Washer
5.02.2.1 Ligands Control the Synthesis of NPs
5.02.2.2 A Brief Introduction to Classical Nucleation Theory
5.02.2.3 Ligands Stabilize NP Suspensions
5.02.2.4 Ligands and the Shape of NPs
5.02.2.5 Ligands Give NPs Physicochemical Functionality
5.02.3 What to Expect,Ab Initio Calculations
5.02.4 Experimental Observation of NP Ligands
5.02.4.1 Indirect Probing of Ligand Exchange
5.02.4.2 Direct Probing of Ligands
5.02.5 Observing NP Ligands with Solution NMR Spectroscopy
5.02.5.1 Solution NMR Techniques for Observing QD Ligands
5.02.5.1.1 A brief introduction in solution NMR spectroscopy
5.02.5.1.2 Pulsed field gradient NMR spectroscopy
5.02.5.1.3 Nuclear Overhauser effect NMR spectroscopy
5.02.5.2 The Tightly Bound Ligand
5.02.5.2.1 What to expect?
5.02.5.2.2 The basic experiment:1D 1H NMR
5.02.5.2.3 Tracing down the ligand resonances by diffusion NMR
5.02.5.2.4 Identifying ligands, proton-carbon correlations
5.02.5.2.5 A note on relaxation rates and peak broadening
5.02.5.3 Adsorption-Desorption Equilibria,1H NMR as a Quantitative Technique
5.02.5.3.1 Quantitative NMR
5.02.5.3.2 Observing adsorption-desorption equilibria by NMR
5.02.5.3.3 Understanding the adsorption isotherm
5.02.5.4 Adsorption-Desorption Kinetics,Exploiting the NOE
5.02.5.4.1 Dodecylamine stabilized Q-CdTe,does the tightly bound ligand model work?
5.02.5.4.2 Observed NMR resonances,a story of timescales
5.02.5.4.3 Tightly bound ligands have strongly negative NOEs
5.02.5.4.4 Rapidly exchanging ligands show strongly negative transfer NoEs
5.02.5.5 In Situ Monitoring of NP Synthesis
References
5.03 納米粒子組裝
5.03.1 Introduction
5.03.2 Assembly Methods for 1D NPs
5.03.2.1 Assembly of NPs for Nanorod and Nanowire Formation
5.03.2.2 Assembly of 1D NPs on Polymer Templates
5.03.3 Assembly of NPs to Form 2D Nanocomposites
5.03.4 Biomolecules as Templates for Assembling NPs in 1D and 2D Architectures
5.03.5 Modulation of the Properties of 1D and 2D Structures
5.03.5.1 Optical Response
5.03.5.2 Electronic Behavior
5.03.5.3 Magnetic Properties
5.03.6 Summary and Outlook
References
5.04 周期的介孔材料:充滿機遇的孔道
5.04.1 Introduction
5.04.2 Hierarchical Organization of Mesoporous Materials
5.04.2.1 Self-Assembly of Sol-Gel Precursors and Templates-From Micro to Meso
5.04.2.2 Growing Complexity:Powder,Films,and the Importance of Form
5.04.3 Bringing Function into Voids
5.04.3.1 Grafting
5.04.3.2 Co-Condensation
5.04.3.3 Periodic Mesoporous Organosilicates
5.04.4 Nonsiliceous Mesoporous Materials
5.04.4.1 Mesoporous Metal Oxides and Phosphates
5.04.4.1.1 Synthesis strategies and objectives
5.04.4.1.2 Realized compositions
5.04.4.1.3 Perspectives I:Toward crystallized mesoporous oxides
5.04.4.1.4 Perspectives II:Form and function
5.04.4.2 Mesoporous Metals and Semiconductors
5.04.4.2.1 Mesoporous semiconductors
5.04.4.2.2 Mesoporous metals
5.04.4.3 Mesoporous Carbon
5.04.4.3.1 OMCs obtained by hard templating
5.04.4.3.2 OMCs obtained by soft templating
5.04.4.4 Mesoporous Ceramic Materials
5.04.4.4.1 Silicon-based mesoporous ceramics
5.04.4.4.2 Mesoporous carbon and boron-based ceramics
5.04.5 Mesoscience to Mesotechnology-Why Meso?
5.04.5.1 Sorbents and Separation Science
5.04.5.2 Catalysis
5.04.5.3 Drug Delivery
5.04.5.4 Sensing
5.04.5.5 Low-k Materials
5.04.5.6 Photovoltaics
5.04.6 Conclusion and Outlook
References
5.05 單層自組裝
5.05.1 Molecular Self-Assembly and Nanoscience
5.05.2 Driving Forces for Molecular Assembly:Molecular Interactions in Self-Assembled Monolayers
5.05.3 Overview of Previous Studies of Molecular Self-Assembled Monolayers
5.05.4 Brief Summary of Synthetic Methods of 2D Self-Assembled Monolayers and the Main Techniques to Study them
5.05.5 Molecular Self-Assembly on Au(111
5.05.5.1 CH3(CH2)nSH
5.05.5.2 CH3(CH2)nCS2H
5.05.5.3 C6H5(CH2)nSH
5.05.5.4 CH3-(C6H4)2-(CH2)n-SH
5.05.5.5 CF3(CH2)nSH
5.05.5.6 Diamidothiol
5.05.6 Organic Monolayers on Ag(111
5.05.7 Self-assembly of Organic Molecules on Cu,Al,Hg,Al2O3,and SiOx/Si Substrates
5.05.8 Molecular Self-Assembly on Highly Oriented Pyrolytic Graphite
5.05.8.1 Single-Component Long-Chain Molecules:Linear Packing and Molecular Distortion
5.05.8.1.1 Molecular parallel packing
5.05.8.1.2 Molecular distortion
5.05.8.2 Multicomponent Self-Assembly and Formation of Nanostructures
5.05.8.3 Molecular Chirality upon Self-Assembly
5.05.9 Summary
References
5.06 納米晶體合成
5.06.1 Introduction
5.06.1.1 Milestones of Progress in Nanocrystal Synthesis
5.06.1.2 Synthetic Methods
5.06.1.2.1 High-temperature organo-metallic method
5.06.1.2.2 Single-source molecular precursor method
5.06.1.2.3 Solvothermal/hydrothermal method
5.06.1.2.4 Water-phase synthesis
5.06.1.2.5 Template-assisted growth methods
5.06.1.2.6 Synthesis of semiconductor nanocrystals in microfluidic reactors
5.06.2 Size Tuneability of Nanocrystals
5.06.2.1 Introduction
5.06.2.2 Mechanisms of Size Control
5.06.2.2.1 Nucleation and growth of nanocrystal
5.06.2.2.2 Concepts in size control
5.06.3 Shape,Phase,and Composition Control of Nanocrystals
5.06.3.1 Shape Control of Nanocrystals
5.06.3.1.1 Dynamic-induced anisotropic growth
5.06.3.1.2 Seed-mediated growth
5.06.3.1.3 The Oriented attached method
5.06.3.2 Composition Control
5.06.4 Overview of the Nanocrystal Synthesis by Material
5.06.4.1 II-VI Semiconductor Nanocrystals
5.06.4.2 III-V Semiconductor Nanocrystals
5.06.4.3 IV-VI Semiconductor Nanocrystals
5.06.4.4 IV Semiconductor Nanocrystals
5.06.4.5 III-VI and I-III-V Nanocrystals
5.06.4.6 Metal Oxides
5.06.4.6.1 Sol-gel method
5.06.4.6.2 Nonhydrolytic route
5.06.5 New-Generation Semiconductor Nanocrystals
5.06.5.1 Nanocrystal Heterostructures
5.06.5.1.1 Synthetic techniques for the preparation of nanocrystal heterostructures
5.06.5.1.2 Synthesis of 0D core-shell Nanocrystal heterostructures
5.06.5.1.3 Synthesis of anisotropic and more complex nanocrystal heterostructures
5.06.5.2 Doped Nanocrystals
5.06.5.2.1 Synthesis of doped nanocrystals
5.06.6 Summary
References
5.07 納米粒子自組裝基元
5.07.1 Introduction
5.07.1.1 Self-Assembly Principle
5.07.1.2 NBB Classification
5.07.2 NBB Self-Assembly Approaches
5.07.2.1 Self-Assembly on a Substrate
5.07.2.2 Interfacial Assembly
5.07.2.3 Template-Assisted Assembly
5.07.3 Self-Assembly of Complex-Shaped NBBs:Tetrapods
5.07.4 Computational Approach to Nanoparticle Self-Assembly
5.07.4.1 Computational Framework for Nanoparticle Self-Assembly
5.07.4.2 Computational Studies on the Self-Assembly of NBBs on a Substrate
5.07.4.3 Computational Studies on the Interfacial Assembly of NBBs
5.07.4.4 Computational Studies on NBB Self-Assembly on a Templated Surface
5.07.4.5 A Proposed Approach for Modeling Tetrapod Self-Assembly
5.07.5 Summary
References
5.08 組裝嵌段共聚物的化學過程
5.08.1 Introduction
5.08.2 Work Prior to 1992 on Chemical Processing of Self-Assembled Block Copolymers
5.08.3 Our Research Program and Activities
5.08.4 Architectures from Chemically Processing Assembled Block Copolymers
5.08.4.1 Cyclic Polymers
5.08.4.2 Thin Films Containing Nanochannels
5.08.4.3 Cell-Like Microspheres
5.08.5 Block Copolymer Nanofibers and Nanotubes
5.08.5.1 Nanofiber Preparation
5.08.5.2 Nanotube Preparation
5.08.5.3 Dilute Solution Properties
5.08.5.4 Chemical Reactions
5.08.5.4.1 Backbone modification
5.08.5.4.2 Surface grafting
5.08.5.4.3 End functionalization
5.08.6 Concluding Remarks
References
5.09 生物模版制備半導體納米晶體
5.09.1 Introduction
5.09.2 Living Cells as Semiconductor Nanocrystal Factories
5.09.3 Peptides and Proteins as Templates for Semiconductor-Based Nanomaterials
5.09.4 Nucleic Acids as Templates for Semiconductor-Based Nanomaterials
5.09.4.1 Monomeric Nucleotides as Semiconductor Nanocrystal Ligands:Roles of Base and Backbone
5.09.4.2 Oligomeric Nucleotides as Semiconductor Nanocrystal Ligands:Roles of Length and Sequence
5.09.4.3 Studies of Nucleic Acids with 3D Structure as Semiconductor Nanocrys
5.01 Porous Metal-Organic Frameworks
Q Fang, J Sculley, and H-C J Zhou, Texas A&M University, College Station, TX, USA G Zhu, Jilin University, Changchun, P.R. China a 2011 Elsevier B.V. All rights reserved.
5.01.1 Introduction 1 5.01.2 Inorganic SBUs and Organic Linkers 2 5.01.3 Architecture of the Networks 2 5.01.4 Porous Structures 3 5.01.4.1 0D Cage 3 5.01.4.2 1D Channels 3 5.01.4.3 2D Layers 4 5.01.4.4 3D Channels 5 5.01.5 Synthesis of MOFs 5 5.01.5.1 Influencing Factors 5 5.01.5.2 Solvent-Evaporation Synthesis 5 5.01.5.3 Diffusion Synthesis 5 5.01.5.4 Hydrothermal (or Solvothermal) Synthesis 6 5.01.5.5 Microwave-Reaction Synthesis 6 5.01.5.6 Ionothermal Synthesis 6 5.01.5.7 Electrochemical Synthesis 6 5.01.5.8 High-Throughput Synthesis 6 5.01.6 Functions of MOFs 7 5.01.6.1 Gas Storage 7 5.01.6.1.1 Hydrogen Storage 7 5.01.6.1.2 Methane Storage 8 5.01.6.1.3 Carbon Dioxide Storage 8 5.01.6.2 Selective Gas Adsorptions and Separations 10 5.01.6.3 Catalysis 11 5.01.6.4 Magnetism 13 5.01.6.5 Optics 13 5.01.6.6 Sensor 14 5.01.6.7 Drug Delivery 15 5.01.7 Summary and Outlook 15 References 16
5.01.1 Introduction
Porousmaterials,eithernaturalorartificial,havelongattractedtheattentionofchemists,physicists,andmate-rialsscientists,muchofthisinterestowingtothepotentialpropertiesoflargepores.Basedontheircom-position,theseporousmaterialscanbeclassifiedastwotypes:inorganicandcarbon-basedmaterials[1-5].
Recently,anewclassofporousmaterials,metal-organicframeworks(MOFs,alsoreferredtoaspor-ouscoordinationpolymers(PCPs)),hasundergonerapiddevelopmentandbeguntobridgethegap
betweenthetwopreviouslymentionedclassesofporousmaterials[6-26].MOFsarebuiltupofmetalionsormetalionclustersconnectedtoorganicligandspossessingmultidentategroupsbystrongionocovalentordativebonds.ThereareexamplesofMOFscontainingmetalsrangingfromalkalineearthtotransitiontop-blockmetalsandlanthanides.MOFsattractedagreatdealofattentioninthe1990s,asisapparentfromtheremarkableincreaseinthenumberofpaperspublishedinthisareaduringthistime.TheattentionstemsfromthesynthesisofMOFs,whichcanexhibitcompletelyregularlarge
a) (b
Figure 1 View of the structures of (a) MOF-5 and (b) HKUST-1.
cavitiesand/oropenchannels.TopicalexamplesareHKUST-1andMOF-5,whichresultinlargeporesizesandBrunauer,Emmett,andTeller(BET)sur-faceareasof1800and3800m2 g 1 respectively(Figure1)[21,24].Theatomsthatcomposethewallsoftheseporescreateanastonishinglylargesurfaceareaonwhichinteractionsandreactionscanoccur.ThesynthesisofsuchMOFsoccursundermildconditionsandtheselectionofacertaincombi-nationofdiscretemolecularunitsleadstothedesiredextendednetwork.Asalreadymentioned,researchintoMOFsisgainingmomentumbecauseMOFspossesstheadvantagesofbothorganicandinorganicmaterialsincludingfunctionalgroupsandopen-metalsites[27].ThesefeaturesofMOFsgiverisetoagreatnumberofpotentialandrealizedapplica-tions,suchasgasseparationsandstorage,catalysis,drugdelivery,aswellasnewfunctionalmaterialsbasedonpost-syntheticmodification[28-33].
MOFshavegreatlyexpandedthescopeofporousmaterials,eventhoughtheyarelargelyrestrictedtothemicroporousdomain(poreslessthan2nm).Recently,somemesoporousMOFswithporesizesrangingfrom2to50nmhavebeenreported.ThesecompoundsexpandthepotentialapplicationsofMOFsintoareassuchasmacromolecularcatalysisandseparation[34-44].Forexample,Yaghietal.preparedthefirst(3D)mesoporousMOF,isoreticularmetal-organicframe-work(IRMOF)-16,bysuccessfullyusingalonglinker,[1,19:49,10-terphenyl]-4,40-dicarboxylate(TPDC)[34].ThisMOFhastheexpectedtopologyofCaB6adaptedbytheprototypeIRMOF-1(alsodesignatedasMOF-5)inwhichanoxide-centeredZn4Otetrahedronisedge-bridgedbysixcarboxylategroupstogivetheoctahedron-shapedsecondarybuildingunit(SBU)thatreticulatesintoa3Dcubicporousnetwork.Inthisstructure,thefree-andfixed-diametervaluesare19.1and28.8A. ,respectively.
5.01.2 Inorganic SBUs and Organic Linkers
Inadditiontothetwocentralcomponentswithwhichtheprincipalframeworkisconstructed,metalionsandligands,thereareauxiliarycomponents,suchascounteranions,nonbondingguests,andtemplatemolecules,whichmayallinfluencethefinalstructure.DuetothecomplexanddynamicconditionsunderwhichMOFsaresynthesized,itisdifficulttopredicttheresultingstructureofaMOFbasedsolelyonthestartingmaterialsandconditions.
Theimportantcharacteristicsofmetalionsandligandsaretheircoordinationnumbersandcoordinationgeometries.Asmetalcentershavetoomanybindingsitesfortheorganicligandsandcontainlittledirectionalinformation,itisdifficulttopredictthestructuresthatwillresultfromanycombinationofsimplemetalsaltsandorganiclinkers.Recently,YaghiandcoworkershavedefinedmetalcentersofMOFsasSBUsandillustratedthepossibleinorganicSBUs(Figure2).ThedesignofMOFsbasedontheseinorganicSBUsfacilitatesframe-worksynthesis[13].Themostcommonlinkersaremultidentateorganicligandssuchascarboxylates,4,49-bipyridine,andimidazolederivatives.Theseorganiclinkersaffordawidevarietyoflinkingsiteswithtunedbindingstrengthanddirectionality.Theseligandscanbeselectedforthenodesinthetargetnetworkandtheycanbealsosynthesizedandmodifiedbyorganicsynthesis.
5.01.3 Architecture of the Networks
Figure3showssomesimplearchitecturesofthenet-worksassembledfrommetalionsandorganicligands[11].However,morecomplicated3Dframeworkscanbeobtainedbymimickingthetopologiesofthetradi-tionalinorganicsolids[25,26].Theapproachisbased
Inorganic units SBUs Inorganic units SBUs
a
b
c
Figure 2 Examples of inorganic SBUs: (a) triangle, (b) square planar, (c) tetrahedron, (d) octahedron, and (e) trigonal prism. Reprinted by permission from Macmillan Publishers Ltd: Nature (Yaghi OM, O`Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, and Kim J (2003) Reticular synthesis and the design of new materials. Nature 423: 705-714), Copyright (2003).
a) (b) (c) (d) (e) (f
Figure3Schematicrepresentationsofsomeofthesimplenetworkarchitectures:(a)2Dhoneycomb,(b)1Dladder,
c) 3Doctahedral,(d)3Dhexagonaldiamondoid,(e)2Dsquaregrid,and(f)1Dzigzagchain.ReproducedfromMoultonBandZaworotkoMJ(2001)Frommoleculestocrystalengineering:Supramolecularisomerismandpolymorphisminnetworksolids.
Chemical Reviews 101: 1629-1658.
ontheideaofnets,whicharetheabstractmathema-ticalentitiesincludingacollectionofpointsornodeswithdefinedconnectivity[45].Yaghietal.haveexplainedthetopologyoftheorderednetworksbysimplifyingthemathematicalexpressions[25].WhenallverticesarelinkedtoNneighbors,thetopologyisreferredtoasanN-connectednet.Whensomever-ticesareconnectedtoNneighborsandsometoMneighbors,itisa(N,M)-connectednet.Figure4showsexamplesoftopologicalnets.
5.01.4 Porous Structures
5.01.4.1 0D Cage
MOFswith(0D)cagesareframeworkswhicharetoosmalltopermittheguestmoleculestopassthroughandmaybedefinedaseithersolidswithoutwindowsorsolidswithnarrowwindows.Forinstance,Robsonetal.reportedaninterpenetrated3Dnetwork[Zn(CN)(NO3)(tpt)2/3]?(C2H2Cl4)3/4?(CH3OH)3/4(tpt.2,4,6-tri(4-pyridyl)-1,3,5-triazine)thatprovidesabarrierimpenetrabletoeventhesmallestmolecules,whicheffectivelyisolateseachporefromitsneighborsandfromtheoutsidespace[46].Inthisstructure,eachcageiswideopenandcanaccommodateapproximatelynine1,1,2,2-tetrachloroethanemoleculesandninemethanolmolecules,allofwhicharehighlydisordered.ThedistanceacrosstheinnershellofthecagefromoneZn4squaretotheoppositeandparallelZn4squareis23.448(4)A. . However, due to narrow windows, guest molecules are unable to pass out of these cages.
5.01.4.2 1D Channels
AccordingtotheInternationalUnionofPureandAppliedChemistry(IUPAC)definition,aporethatisinfinitelyextendedinonedimensionandislargeenoughtoallowguestspeciestodiffusealongitslengthiscalledachannel[47].SeveralMOFswithregular1Dchannelshavebeensynthesizedandcrystallographi-callycharacterized.Forexample,Qiuetal.describedthesynthesisandstructureofamesoporousMOF,JUC-48,fromarigidandlinearorganicO-donorligand,4,49-biphenyldicarboxylate(bpdc)[36].InthisMOF,Cd(II)centersarelinkedtogetherbycarboxylategroupsofbpdctoconstruct1DCd-O-Cchainsthatareinter-connectedthroughthebiphenylgroupsofbpdcto
Figure4Examplesoftopologicalnets:(a)SrSi2net,(b)ThSi2net,(c)diamondnet,(d)CdSO4net,(e)NbOnet,(f)PtS(cooperite)net,(g)Pt3O4net(filledcirclesarePt),(h)boracitenet,(i)BNnet,(j)BCTnet,(k)body-centeredcubicnet,and(l)ReO3arrangementofcorner-sharingoctahedral.ReproducedfromO`KeeffeM,EddaoudiM,LiHL,ReinekeT,andYaghiOM(2000)Frameworksforextendedsolids:Geometricaldesignprinciples.JournalofSolidStateChemistry152:3-20,withpermissionfromElsevier.
a) (b
Figure 5 Representation of a hexagonal nanotube-like channel of JUC-48 of dimensions 24.5 . 27.9A. 2 viewed along the (a
[001] and(b)[100]directions.ReprintedfromFangQR,ZhuGS,JinZ,etal.(2007)Mesoporousmetal-organicframeworkwithrareetbtopologyforhydrogenstorageanddyeassembly.AngewandteChemieInternationalEdition46:6638-6642.Copyright2007AmericanChemicalSociety.
generatea3Dnoninterpenetratingextendednetworkincorporatedbetweenthelayers.Kitagawaetal.havewith1Dhexagonalchannelsof24.527.9A. 2 viewedsynthesizedaseriesoflayeredintercalationMOFs,alongthe[001]direction(Figure5).Eachhexagonal[M(CA)(H2O)2](G)(M.Fe2t,Co2t,orMn2t; channel of JUC-48 can be viewed as a nanotube-like H2CA . chloranilic acid; G . H2Oorphenazine),architecture.whicharesupportedbyhydrogen-bondinginter-
actions[48].Thehostlayersareclassifiedintotwo
groups:thefirsttypeofsheetisformedbyzigzag
5.01.4.3 2D Layers
chains,andthesecondoneisconstructedfromWhilethereareseveralMOFswith2Dlayers,fewstraightchains.Inthisstructure,themolecularhavebeenreportedinwhichseveralguestscanbeassembliesofmetal(II)-CA2chainsandguestmoleculesrevealthreekeyfactorsthatcontrolthecrystalstructures.Thefirstfactoristheconstructionofahydrogen-bond-supported2Dsheet,whichisflexibleandamenabletointercalationofvariouskindsofmoleculesusingthehydrogen-bondinginteraction.Thesecondaspectisthattheintercalatedguestmoleculesaffectthesheetstructureanditsdynamics.Thehydrogenbondingincreasesthedimensionalityofthesystemandthusprovidesstruc-turalvarietiesinthecrystalstructure.Thethirdfeaturecontrollingthecrystalstructureistheselec-tionofthemetalthatmediatesthefine-tuningofthesheet`sstructureandthecon
這個商品不錯~
挺好的,需要細看,價格厚道
好書