本書、系統地介紹深度學習相關的技術,包括人工神經網絡,卷積神經網絡,深度學習平臺及源代碼分析,深度學習入門與進階,深度學習高級實踐,所有章節均附有源程序,所有實驗讀者均可重現,具有高度的可操作性和實用性。通過學習本書,研究人員、深度學習愛好者,能夠在3 個月內,系統掌握深度學習相關的理論和技術。
本書、系統地介紹深度學習相關的技術,所有章節均附有源程序,所有實驗讀者均可重現,具有高度的可操作性和實用性。
張重生,博士,教授,碩士生導師,河南大學大數據研究中心、大數據團隊帶頭人。研究領域為大數據分析、深度學習、數據挖掘、數據庫、數據流(實時數據分析)。
博士畢業于 INRIA,France(法國國家信息與自動化研究所),獲得博士論文榮譽。2010年08月至2011年3月,在美國加州大學洛杉磯分校(UCLA),計算機系,師從著名的數據庫專家Carlo Zaniolo教授,從事數據挖掘領域的合作研究。 2012-2013,挪威科技大學,ERCIM/Marie-Curie Fellow。
目 錄
深度學習基礎篇
第1 章 緒論 2
1.1 引言 2
1.1.1 Google 的深度學習成果 2
1.1.2 Microsoft 的深度學習成果 3
1.1.3 國內公司的深度學習成果 3
1.2 深度學習技術的發展歷程 4
1.3 深度學習的應用領域 6
1.3.1 圖像識別領域 6
1.3.2 語音識別領域 6
1.3.3 自然語言理解領域 7
1.4 如何開展深度學習的研究和應用開發 7
本章參考文獻 11
第2 章 國內外深度學習技術研發現狀及其產業化趨勢 13
2.1 Google 在深度學習領域的研發現狀 13
2.1.1 深度學習在Google 的應用 13
2.1.2 Google 的TensorFlow 深度學習平臺 14
2.1.3 Google 的深度學習芯片TPU 15
2.2 Facebook 在深度學習領域的研發現狀 15
2.2.1 Torchnet ·